Assembly language Programming

Applications

- With out the assembly language programming microprocessor can not works. Instructions are the patterns which is require by the microprocessor to done any task.

Program-1

Statement : Store the data byte 32 H into memory location 4000 H .

MVI A, 32H : Store 32 H in the accumulator
STA 4000 H : Copy accumulator contents at addres s 4000H HLT : Terminate program execution

Program
LXI H : Load HL with 4000H MVI M : Store 32H in memory location pointed by HL register pair (40 00 H)
HLT : Terminate program execution

Program-2 Addition of two number

- MVI A, 24H :load Reg ACC with 24H
- MVI B , 56H : load Reg B with 56H
- ADD B
: ACC= ACC+B
- OUT 01H :Display ACC contents on port 01H
- HALT : End the program
- Result: 7A (All are in Hex)
- DAA operation for Decimal Adjust $\mathrm{A}+6=10 \mathrm{H}$

Program.3. Exchange the contents of memory locations 2000 H and 4000 H

- LDA 2000H : Get the contents of memory location 2000H into accumulator
- MOV B, A : Save the contents into B register
- LDA 4000 H : Get the contents of memory location 4000 Hinto accumulator
- STA 2000 H : Store the contents of accumulator at address 2000 H
- MOV A, B : Get the saved contents back into A register
- STA 4000 H : Store the contents of accumulator at address 4000 H

Program 4. Subtract the contents of memory location 4001 H from the memory location 2000 H and place the result in memory location 4002 H .

Program - Subtract two 8-bit numbers
Sample problem:
$(4000 \mathrm{H})=51 \mathrm{H}$
$(4001 \mathrm{H})=19 \mathrm{H}$
Result $=51 \mathrm{H}-19 \mathrm{H}=38 \mathrm{H}$
Source program:
LXI H, 4000 H : HL points 4000 H
MOV A, M : Get first operand
INX H: HL points 4001 H
SUB M : Subtract second operand
INX H : HL points 4002H
MOV M, A : Store result at 4002 H .
HLT : Terminate program execution

Program 5.Add the 16 -bit number in memory locations 4000 H and 4001 H to the 16 -bit number in memory locations 4002 H and 4003 H . The most significant eight bits of the two numbers to be added are in memory locations 4001 H and 4003 H . Store the result in memory locations 4004 H and 4005 H with the most significant byte in memory location 4005 H .
$(4000 \mathrm{H})=15 \mathrm{H} \quad(4001 \mathrm{H})=1 \mathrm{CH}$
$(4002 \mathrm{H})=\mathrm{B} 7 \mathrm{H}$ $(4003 \mathrm{H})=5 \mathrm{AH}$
Result $=1 \mathrm{C} 15+5 \mathrm{AB} 7 \mathrm{H}=76 \mathrm{CCH}$ $(4004 \mathrm{H})=\mathrm{CCH}$ $(4005 \mathrm{H})=76 \mathrm{H}$

Continue

- LHLD 4000H : Get first I6-bit number in HL
- XCHG : Save first I6-bit number in DE
- LHLD 4002H : Get second I6-bit number in HL
- MOV A, E: Get lower byte of the first number
- ADD L : Add lower byte of the second number
- MOV L, A : Store result in L register
- MOV A, D : Get higher byte of the first number
- ADC H : Add higher byte of the second number with CARRY
- MOV H, A : Store result in H register
- SHLD 4004H : Store I6bit result in memory locations 4004 H and 4005 H .
- HLT : Terminate program execution

Program.6:Subtract the 16-bit number in memory locations 4002H and 4003 Hfrom the 16 -bit number in memory locations 4000 H and 4001 H . The most significant eight bits of the two numbers are in memory locations 4001 H and 4003 H .Store the result in memory locations 4004 H and 4005 H with the most significant byte in memory location 4005 H

Sample problem :
$(4000 \mathrm{H})=19 \mathrm{H}$
$(400 \mathrm{IH})=6 \mathrm{AH}(4004 \mathrm{H})=\mathrm{I} 5 \mathrm{H}(4003 \mathrm{H})=5 \mathrm{CH}$
Result $=6 \mathrm{~A} 19 \mathrm{H}-5 \mathrm{C} 15 \mathrm{H}=\mathrm{OE} 04 \mathrm{H}(4004 \mathrm{H})=04 \mathrm{H}$ $(4005 \mathrm{H})=\mathrm{OEH}$

Continue

Source program:

- LHLD 4000H : Get first 16-bit number in HL
- XCHG : Save first 16-bit number in DE
- LHLD 4002H : Get second 16-bit number in HL
- MOV A, E : Get lower byte of the first number
- SUB L: Subtract lower byte of the second number
- MOV L, A : Store the result in L register
- MOV A, D : Get higher byte of the first number
- SBB H : Subtract higher byte of second number with borrow
- MOV H, A : Store 16bit result in memory locations 4004 H and 4005 H .
- SHLD 4004H : Store 16bit result in memory locations 4004 H and 4005 H .
- HLT : Terminate program execution

Program.7:Find the l's complement of the number stored at memory location 4400 H and store the complemented number at memory location 4300 H .

Sample problem: $(4400 \mathrm{H})=55 \mathrm{H}$
Result $=(4300 B)=$ AAB Source
program:

- LDA 4400B : Get the number
- CMA : Complement number
- STA 4300H : Store the result
- HLT : Terminate program execution

Program.8:Multiply two 8 -bit numbers stored in memory locations 2200 H and 2201 H by repetitive addition and store the result in memory locations 2300 H and 2301 H

Sample problem:
$(2200 \mathrm{H})=03 \mathrm{H}(2201 \mathrm{H})=\mathrm{B} 2 \mathrm{H}$
Result $=\mathrm{B} 2 \mathrm{H}+\mathrm{B} 2 \mathrm{H}+\mathrm{B} 2 \mathrm{H}=216 \mathrm{H}=216 \mathrm{H}$
$(2300 \mathrm{H})=16 \mathrm{H}$
$(2301 \mathrm{H})=02 \mathrm{H}$

Continue

Source program

- LDA 2200H
- MOV E, A
- MVI D, 00 : Get the first number in DE register pair
- LDA 2201H MOV C, A : Initialize counter
- LX I H, 0000 H : Result $=0$
- BACK: DAD D : Result = result + first number
- DCR C : Decrement count
- JNZ BACK : If count 0 repeat
- SHLD 2300H : Store result
- HLT : Terminate program execution

Scope of research

- Develop the new method which is require less running time, less memory space and also have less no of instructions.

